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1. Introduction

Within the field of synergetics, considerable insight has been gained in hydro-
dynamic instabilities. Experimental work on the Payleigh-Beénard instability is
described by BERGE and LIBCHABER in chapters of this book. The present under-
standing of the Taylor instability is reviewed in a previous volume of this
series [1, 2] and a topical book [3]. This communication deals with two aspects
of the physics of the Taylor instability.

2. Divergence of Coherence Length

Theoretical treatments often deal with Taylor vortex flow between infinitely long
cylinders. Experiments necessarily involve cylinders of finite lenath. Suppose the
outer cylinder and both end plates are stationary while the inner cylinder rotates.
Then, in the Couette flow regime, azimuthal velocity is reduced near the end plates.
This implies a deficit of centrifugal pressure near both ends and results in

inward radial secondary flow there. Fig. 1 [5] shows plots of radial velocity
versus the axial coordinate as measured bv laser Doppler equipment [4]. The lower
two tracings refer to subcritical rotation rates, i. e. to conditions where no
vortices should appear in infinitely long cylinders. Regions of inward flow,

i. e. of negative radial velocity occur near both ends. Alternatino velocity
components adjacent to these indicate a system of vortices which decays towards

the interior. The decay constant is called coherence length. The Ginsburg-Landau
theory predicts divergence of the coherence length with critical exponent - 1/2.
Our results agree with this prediction to high accuracy. To obtain satisfactory
agreement, however, a simple exponential fit for obtaining the coherence length

s not sufficient.
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Our analysis [5] proceeds from the Ginsburg-Landau equation
g .3 2 3,2
£ a“v/ax” + eV - VIV =0, (1)

where we identify the order parameter v with maximal radial velocity within a
vortex. Thus v(x) is defined at discrete points only. x is axial coordinate,

r and v_are scale factors for coherence length and order parameter, respectively.
¢®= (r-R°)/R , R and R_ are actual and critical Reynolds numbers, the latter
referrind to“an infinifely long cylinder. Appropriate solutions of (1) are [é]
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Here nc and dc are Jacobian elliptic functions whose second arqument is named
parameter. The origin of the x-coordinate is midway between both ends, where v(x)
attains its minimum v_. Fig. 2 shows two examples of least squares fits of
measured velocity data points in terms of functions (2) and (3). This fit yields
the parameter which in turn yields ev®. Fig. 3 shows the values ev” so determined
versus rotation rate of inner cy11nde?* They fall on a straight life. Its

intercept with the abscissa gives the critical rotation rate for the onset of
stationary Taylor vortices in the infinite geometry. The numerical value

£ =4.233 (+ 0.001) Hz is compatible with -the computed R_ = 68.0 for our wide gap
g@umetry (with radii R, = 2R,) to within the accuracy of our viscosity measurement.
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Fig,2 Examples of fitting of measured velocity maxima in terms of elliptic func-
tions. Top curve: nc-function, parameter 1.00. vp = 0.07 cm/s, rotation rate
4.174 Hz. Bottom curve: dc-function, parameter 0.22, vy = 0.48 cm/s, rotation
rate 4,249 Hz

Fig.3 Values of eV, obtained from curve fitting versus rotation rate. Intercept
of straight line with abscissa yields critical rotation rate for infinite cylin-
der
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Mote that fig. 3 includes data points at negative c=. These refer to vortices
generated by centrifugal deficit and inward flow at either end. Such data would
not occur in infinitely long cylinders. Qur procedure allows the evaluation of
critical phenomena in infinitely long cylinders by equipment of finite length.

3. Excitation of Resonance

Here we report preliminary results of a forced oscillation experiment in which
resonant response of the Taylor vortex system 1s observed. In our wide gap
geometry, the first instability at R = 68 involves the transition from Couette
flow to stationary Taylor vortices. The second instability near = _ & 560 leads
to time dependent wavies with m = 1. In this flow pattern the vortfces are tilted
with respect to the plane normal to the cylinder axis, and precess about it with
rotation rat- W == 0.08 2 where 7 is the rotation rate of the inner cylinder.

Starting point for the experiment is the assumption that a tilted and rotating
end plate should be able to induce tilted and precessing wavies. The experimental
setup 1s sketched in fig. 4. For R > = __ available evidence indicates the
simultaneous presence of natural and e?citing frequencies, «_ and w, respectively.
At R < R__ the oscillatory vertical velocity component measufed by laser Doppler
anemnmet?f shows only the exciting frequency w. However, this component becomes
larger in a resonant fashion as w approaches . . The resonance is sharper and
amplitude larger as R approaches Rr , from below. This is seen in the 2xnerimental
curves of fig. 5. Note that similaF“behavior is also found in electronic
oscillators. With subcritical positive feedback they are just resonant narrow-band
amplifiers.
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For theoretical description we assume a complex Ginsburg-Landau equation

T aV/3t - iw T V = gV = vjfvz + 14 quja A (4)
o “o o o E: o o

L]

It may be obtained by transforming from the corotating to rest frame. Here
e=(R-R_)/R . For e < 0, small order parameter and prescribed boundary

2 c2 2 3
value at x"= 0, ¥ = vl exp (iwt) the solution is

V =¥, exp [imt - fxfiﬂ} { [ ¢ | -i(w - Y R ]»l‘“!E ] (5)

This functional dependence accounts for the observed sharpness of resonance. The
exponential x-dependence is not in disagreement with preliminary data. The phase
shift versus x as implied in (5) has not yet been measured. The asymmetry of
observed resonance curves fig. 5 is not in line with (5) and needs further
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explanation. 'le feel, however, that this kind of experiment will help to clarify
mechanisms of hydrodynamic instability.
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